
WEEK 04



2.1.1 
REGRESSION



CAUSALITY & REGRESSION

 Causality: Relationship between cause and effect, where one event (the cause) directly 

influences another event (the effect). 

Example: the relationship between rainfall and flooding

 Co-variation: Two variables change together. If two variables tend to increase or decrease in a 
related manner, they are said to covary (not causality)



SPURIOUS RELATIONSHIP

The covariation between 𝑋 and 𝑌 can be influenced by their joint relationship to 
another variable 𝑍 (or a set of variables)

Examples of spurious relationship

https://www.statology.org/spurious-correlation-examples/


2.1.2 BIVARIATE REGRESSION 



MODEL BASED ON POPULATION AND SAMPLE

 For the 𝑖-th observation, the population model is 𝑦𝑖 = 𝛽0 + 𝛽1 ∗ 𝑥𝑖1 + 𝜀𝑖

1) The 𝛽0, 𝛽1 are constant across all observations

2) 𝜀𝑖 (the error also called disturbance) is directly associated to the 𝑖-th observation

Can we directly observe the population parameter 𝛽0, 𝛽1, 𝜀𝑖 from sample? 🤔

 For the 𝑖-th observation, the estimated model based on sample is:

ෝ𝑦𝑖 = 𝑏0 + 𝑏1 ∗ 𝑥𝑖1 + 𝑒𝑖 with the residual 𝑒𝑖 = 𝑦𝑖 − ෝ𝑦𝑖

If you were analyzing a dataset on housing prices, what could 𝑥𝑖1 and ෝ𝑦𝑖 ​ represent in a regression 
model? 🤔



POPULATION REGRESSION LINE VS SAMPLE REGRESSION LINE

Red line: population regression line
Dark blue: sample regression line 

Light blue: sample regression line 
based on different samples



2.1.3 ORDINARY LEAST 
SQUARES ESTIMATION



Ordinary Least Squares

1. A straight line can minimize the error (the difference between 𝑦𝑖 and ෝ𝑦𝑖)

𝑒𝑖 = 𝑦𝑖 − ෝ𝑦𝑖

Do you want a smaller error or 
larger error? 🤔
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2. Variance Decomposition

As long as the linear model has an intercept, the 
regression line always goes through means of 𝑋
and 𝑌, i.e., the point ( ̅, ̅) will be on the 
regression line 



2. TSS, RSS, ESS
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TSS = ESS + RSS



SLOPE AND INTERCEPT

The lest square approach use b0 and b1 to minimize the RSS

𝑅𝑆𝑆 = 𝑒1
2 + 𝑒2

2 + …+ 𝑒𝑛
2, where 𝑒𝑖 = 𝑦𝑖 − ෝ𝑦𝑖 = 𝑦𝑖 − (𝒃𝟎 + 𝒃𝟏 ∗ 𝑥𝑖1)



EXPLANATION ON 𝑏0 AND 𝑏1

Which line has the highest slope?

Which line has the lowest intercept?



EXPLANATION ON 𝑏0 & 𝑏1

𝑏0 = 7.03, 𝑏1 = 0.0475

𝑥: The advertising budget on TV (unit: $) 
𝑦: The sales of the TA

If no money is spent on advertising (𝑥 = 0), what 
does the model predict for TV sales? 🤔

If the advertising budget increases by 1 dollar, how 
much does the model predict sales will increase? 🤔

If the advertising budget increases by $100, how 
much would we expect sales to increase? 🤔



2.1.4 STANDARD ERROR OF 𝑏0
& 𝑏1



The estimated coefficients (𝑏0 and 𝑏1) differ from sample to sample

Red line: population regression line
Dark blue: sample regression line 

Light blue: sample regression line 
based on different samples

How close the 𝑏0 and 𝑏1 are to 
the true values 𝛽0 and 𝛽1 ?



STANDARD ERROR

 Standard error measure the uncertainty of the estimated parameter, 𝑏0 and 𝑏1

𝑆𝐸𝑏1 = 𝑉𝑎𝑟 𝑏1 =
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If the standard error of 𝑏1 ​ is large, what does it indicate about the reliability of our estimate? 🤔What is the effect of a small residual sum of squares (RSS) on the standard error?
How does the total of sum of squares 𝑇𝑆𝑆𝑥 affect the standard error? 

Low uncertainty of any estimates is desirable properties. 



2.1.5 CONFIDENCE INTERVAL



CONFIDENCE INTERVAL FOR 𝑏0

A 95% confidence interval is defined as a range of values such that with 95% 
probability, the range will contain the true unknown value of the parameter.

[ 𝑏0 + 2 ∗ 𝑆𝐸 𝑏0 , b0 − 2 ∗ 𝑆𝐸 𝑏0 ]



CONFIDENCE INTERVAL FOR 𝑏1

A 95% confidence interval is defined as a range of values such that with 95% 
probability, the range will contain the true unknown value of the parameter.

[𝑏1 + 2 ∗ 𝑆𝐸 𝑏1 , 𝑏1 − 2 ∗ 𝑆𝐸 𝑏1 ]



2.1.6 𝐻𝑌𝑃𝑂𝑇𝐻𝐸𝑆𝐼𝑆 𝑇𝐸𝑆𝑇



HYPOTHESIS TEST FOR 𝑏1

𝐻0: 𝑏1 = 0 (There is no relationship between 𝑋 and 𝑌)
𝐻1: 𝑏1 ≠ 0 (There is some relationship between 𝑋 and 𝑌)

If the 𝑋 variable does not explain any variation in 𝑌, then there is no relationship 
between 𝑋 and 𝑌



t-statistics

𝑡 =
𝑏1 −0

𝑆𝐸𝑏1

p-value: A small p-value indicates that it is unlikely to observe such as substantial association 
between the 𝑋 and 𝑌.

Reject the null hypothesis: if the p-value is small enough. Typical p-value cutoffs for rejecting the null 
hypothesis are 5 or 1%.  
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RESIDUAL STANDARD ERROR

𝑅𝑆𝐸 =
1

𝑛 − 2
𝑅𝑆𝑆 =

1

𝑛 − 2
෍

𝑖=1

𝑛

𝑦𝑖 − ෝ𝑦𝑖
2

The 𝑅𝑆𝐸 is considered a measure of the lack of fit of the model

Roughly speaking, it is the average amount that the ෝ𝑦𝑖 will deviate from the 𝑦𝑖 .

For data with the same scale, Does a smaller RSE indicate a better or worse model fit?



The goodness of fit

𝑅2 =
𝐸𝑆𝑆
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The adjusted goodness of fit

More variables are considered into the regression equation, the better the fit of the 
model will be 
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Assessing the Accuracy of the Model



2.1.8 KEY ASSUMPTION ON 
REGRESSION ANALYSIS



1. Linearity: The relationship between the independent variable and 
dependent variable is linear, if there is a nonlinear trend, an advanced 
regression method should be applied

Liner regression line

Residual plot is a useful graphical 
tool for identifying non-linearity. 

Non-linearity of the Data



2. The error at any level of 𝑥𝑖 share an identical distribution, with 𝑚𝑒𝑎𝑛 =
0 and constant variance

non-constant variance of Error Termsconstant variance of Error Terms

IMAGE SOURCE: HTTPS://WWW.BOOKDOWN.ORG/RWNAHHAS/RMPH/MLR-CONSTANT-VARIANCE.HTML



3. Error are assumed to be independent (uncorrelated) among each other

Example of correlated Error



4. i.i.d Normality of Error

This assumption states that the disturbances (errors) in a regression model are:

1) Independently and identically distributed (i.i.d)

2) Normally distributed (i.e.,𝜀𝑖~𝑁(0, σ
2)

This assumption is important because it allows for valid hypothesis testing and confidence 
intervals, even when the sample size is very small.



4. OUTLIER

If we drop outlier, 20, the RSE decrease from 1.09 to 0.77.
𝑅2 increase from 0.805 to 0.892. 

If we believe the outlier is due to an error in data collection, we can simply remove the observation.

However, care should be taken ,since an outlier may indicate a deficiency in the model, such as missing 
𝑥 variables 



WEEK 03 

CODE DEMO SESSION



CODE

 week04_Demo


